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Abstract

During the past decade gas-kinetic methods based on the BGK simplification of the Boltzmann equation have been
employed to compute fluid flow in a finite-difference or finite-volume context. Among the most successful formulations
is the finite-volume scheme proposed by Xu [K. Xu, A gas-kinetic BGK scheme for the Navier-Stokes equations and
its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171 (48) (2001) 289-335]. In this paper
we build on this theoretical framework mainly with the aim to improve the efficiency and convergence of the scheme, and
extend the range of application to three-dimensional complex geometries using general unstructured meshes. To that end
we propose a modified BGK finite-volume scheme, which significantly reduces the computational cost, and improves the
behavior on stretched unstructured meshes. Furthermore, a modified data reconstruction procedure is presented to remove
the known problem that the Chapman-Enskog expansion of the BGK equation fixes the Prandtl number at unity. The new
Prandtl number correction operates at the level of the partial differential equations and is also significantly cheaper for
general formulations than previously published methods. We address the issue of convergence acceleration by applying
multigrid techniques to the kinetic discretization. The proposed modifications and convergence acceleration help make
large-scale computations feasible at a cost competitive with conventional discretization techniques, while still exploiting
the advantages of the gas-kinetic discretization, such as computing full viscous fluxes for finite volume schemes on a simple
two-point stencil.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Most applications of computational fluid dynamics are based on the solution of the Euler or Navier—Stokes
equations. Both can be derived from the Boltzmann equation, which governs the evolution of a single gas
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distribution function describing the entire fluid state. In fact, the Euler and Navier—Stokes equations are only
the zeroth and first order approximation in the Chapman—Enskog expansion of the Boltzmann equation.

Because of its high dimensionality and the complicated collision integral the solution of the Boltzmann
equation is impractical for all but the simplest problems. Furthermore, the Navier—Stokes equations are suf-
ficiently accurate for very many applications. Nevertheless, the gas-kinetic description of flow physics offers an
interesting alternative in the construction of numerical schemes. It seems rational to apply the discretization to
the more fundamental quantity, the distribution function, rather than the derived quantities, the primitive or
conservative variables. In a finite-volume context numerical fluxes can be computed from the distribution
function. If such a distribution function is constructed up to the Navier-Stokes level of accuracy, the discret-
ization allows for the computation of the complete Navier—Stokes fluxes directly as a moment of the distribu-
tion function, which is usually obtained on a simple two-point discretization stencil. This means that the terms
which give rise to the rate-of-strain tensor and heat flux vector are computed as natural parts of a gas distri-
bution function on the same stencil as convective fluxes, avoiding additional viscous discretization. This facil-
itates mesh-transparent formulations of numerical schemes considerably, which makes the gas-kinetic route
particularly attractive for the implementation on general unstructured meshes.

There is a rich body of literature on kinetic schemes for conservation laws. A brief theoretical introduction
can be found in [1]. The benefit of kinetic formulation and representation of conservation laws is not limited to
the construction of kinetic schemes, although this is our primary interest here. The kinetic approach may also
be used to simplify the theoretical analysis of conservation laws, which, in particular for scalar conservation
laws, has led to useful results [2]. An early example for a gas-kinetic scheme for inviscid flow is the equilibrium
flux method by Pullin [3]. Deshpande pioneered the use of kinetic flux-vector splitting (KFVS), based on the
collisionless Boltzmann equation, for the Euler equations [4]. Chou and Baganoff [5] proposed a KFVS
scheme for the Navier—-Stokes equations. A scheme based on the BGK simplification of the Boltzmann equa-
tion was proposed by Prendergast and Xu [6], which was later analyzed and modified by Xu et al. [7,8]. This
scheme has been very successful by introducing the BGK equation as a good compromise between the colli-
sionless Boltzmann equation and the full Boltzmann equation. The BGK equation contains a simple modeling
of the molecular collision process, and in fact allows the recovery of the Euler and Navier—Stokes equations by
means of Chapman—Enskog expansion, much like the full Boltzmann equation (barring inexact transport
coefficients). Furthermore, the BGK equation possesses an analytic solution, which can be directly used for
the construction of numerical fluxes. Recently Ohwada has given an analysis of the scheme [9], which estab-
lished and quantified its consistency and accuracy. We refer to this scheme simply as the BGK scheme.

Gas-kinetic schemes have considerable potential on general unstructured meshes, for which one aims to
employ discretization techniques which do not depend on the mesh topology, i.e. are mesh transparent.
For conventional schemes this is straight forward only for the convective terms of the Navier-Stokes equa-
tions, while the viscous discretization typically depends on the mesh topology and also the choice of control
volume in a finite-volume scheme (cell-centered vs. cell-vertex schemes). The BGK scheme allows a stable vis-
cous discretization on a universal next-neighbor stencil regardless of the mesh topology. Our overall formu-
lation of the scheme is designed for general three-dimensional structured and unstructured meshes, and we will
present results for different types of meshes in two and three dimensions.

The only obvious disadvantage of the BGK scheme is the fact that it is extremely expensive in terms of
floating point operations per flux computation compared to other finite-volume schemes, in particular in a
multidimensional formulation [10]. It is probably the main reason why the scheme has not been very often
considered for practical applications. We address this issue by proposing a modification of the scheme, which
significantly reduces the computational cost, in particular for three-dimensional flow. Furthermore, the issue
of convergence acceleration has not been given much attention. We present a multigrid formulation for the
BGK scheme, which dramatically accelerates convergence to a steady state and, along with appropriate par-
allelization, is indispensable for large-scale computations of steady flow. Together with the proposed modifi-
cations this makes the BGK route viable for nontrivial three-dimensional computations.

A subject of debate has been the fact that schemes based on the BGK equation will fix the Prandtl number
at unity. Different methods for removing this problem have been proposed. We present an alternative to the
methods proposed in [8,11] which allows one to set the correct Prandtl number by a very simple modification
of the construction of the gradients of the distribution function, reducing the computational cost. In fact the
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proposed method requires almost no extra computation (one floating point operation per gradient
construction).

The paper is organized as follows. In Section 2 we briefly review some general concepts to illustrate the gas-
kinetic route to finite-volume schemes for the Euler and Navier—Stokes equations. In Section 3 we briefly reca-
pitulate the derivation of the BGK scheme, before we present and motivate the aforementioned modifications.
The modified reconstruction which allows one to set the correct Prandtl number is outlined in Section 4. After
discussing algorithmic details in Section 5, we present basic validation results in Section 6, and results for two-
and three-dimensional flow computations in Sections 7 and 8, respectively.

2. Gas-kinetic numerical schemes
In a gas-kinetic description of fluid flow all relevant flow variables are defined as moments of a distribution

function. Let p be the density, (U, V, W) the velocity vector in Cartesian coordinates, and E the total energy.
The conservative variables, given by

q=(p,pU,pV,pW E)", (1)
can be written as
epzn) = [ @fleyzu o, wr, O dudodde, )

where f'is the distribution function, u,v,w are the phase-space velocities and ¢ stands for internal degrees of
freedom. In the following we restrict ourselves to monoatomic gases for the sake of simplicity. For polyatomic
gases internal degrees of freedom cause only minor differences in the formalism, see the discussion in [12]. For
monoatomic gases the vector ¢ can be written

¢ = (Luv,wi@-@)', (3)
where i = (u, v, w)T. The evolution of the distribution function is given by the Boltzmann equation
of +ii-Vf = 0f.f)- (4)

Here Q(f.f) is the collision integral. Bhatnagar, Gross, and Krook first introduced the concept of replacing the
collision integral with a simple relaxation term, thus arriving at the BGK equation [13]:

of +ii-Vy =128 (5)
Here g is the equilibrium distribution, given by the Maxwellian distribution

g, u) = fo = pX) (@) 3/2674(;)((17717).(17717)), (6)
where

1= 2% (7)

and p is the pressure. We prefer to use the notation f; for the equilibrium distribution to emphasize that this
function is in fact the zeroth order term in the Chapman—Enskog expansion of both the Boltzmann and BGK
equation. In a rough rationalization the BGK equation can be thought of as modeling the distribution func-
tion under the assumption that the flow will be driven to local equilibrium on a time scale 7, the collision time.
It can be found by Chapman-Enskog expansion that the Navier—Stokes equations can be recovered from the
BGK equation with a viscosity coefficient of

u=r1p, (8)

which relates the collision time and thus the molecular collision process directly to the macroscopic dynamic
viscosity.
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We are interested in exploiting the BGK equation in the framework of finite-volume methods. The key idea
behind using gas-kinetic methods in this context is to compute fluxes at interfaces between discrete control
volumes from reconstructed distribution functions in adjacent cells. Consider the Navier—Stokes equations
in integral form for a control volume V;

/dqu-i-/ F.dd =0, 9)

where F(q) is the Navier—Stokes flux vector. If it is assumed that the local direction x and corresponding
phase-space velocity u are normal to the face (one can work with rotated coordinates at each face), one obtains
upon formally integrating Eq. (5) against ¢ and comparison with Eq. (9):

ﬁdﬁ:ﬁw%fmﬂm&f:/WﬂﬁJMEM. (10)

Here & = dudvdw denotes the velocity space and ¥; = (x;, y,, z;)T is the face coordinate. In deriving Eq. (10) we
have made use of the fact, that the moments with ¢ of the right-hand side of both the Boltzmann and the BGK
equation vanish. For this reason the elements of the vector ¢ are sometimes called the collisional invariants.

The flux computed in this manner will be valid provided that the reconstructed distribution function is con-
sistent with the exact distribution function at least to the Euler or Navier—Stokes order of accuracy, depending
on which equation is solved. The fundamental task of a gas-kinetic scheme is thus to construct such a distri-
bution function. Numerical fluxes can then be computed according to Eq. (10), and finally Eq. (9) may be inte-
grated in time to advance the numerical solution.

3. The BGK finite volume method

In this section we present a modified formulation of the BGK scheme designed for three-dimensional
unstructured meshes. We initially restrict the analysis to one dimension to demonstrate the essential steps
and outline the proposed modifications. Subsequently we consider the multidimensional extension.

Ohwada showed [14,9] that in order to approximate the Euler or Navier-Stokes equations via a gas-kinetic
formulation one aims to approximate a modified gas-kinetic equation along with initial conditions, obtained
by means of Chapman-Enskog expansion, based on the Boltzmann or BGK equation, depending on which
equation is chosen as a starting point. If the starting point is the BGK equation, the modified kinetic equation
can be approximated by

Of +udsf = —fi (11)
with the initial condition given by the first-order Chapman—-Enskog distribution
S eu,0) = folx,u) + fi(x, u). (12)

The Chapman—Enskog state f; is given by the Maxwellian distribution, see Eq. (6). The first nonequilibrium
state is given by

Sfi = —(@fo +udfo). (13)

Expanding the analytical solution of this equation for small Az, one can write to the order of tA#* in truncation
error:

SO ut) = folx,u,0) — utd, fo(x,u,0) + tfi (x,u,0) — tf, (x,u,0). (14)

The truncation error in this simplification is the same as the one incurred in the approximated modified kinetic
equation (11). It is this distribution function that we construct at a cell interface between two control volumes,
given the estimates of the macroscopic variables to the left and right of an interface.

In the following we assume without loss of generality that any such interface is located at x, = 0. At the
interface, a logical left cell is associated with x <0 and a logical right cell with x > 0. We assume that cell-aver-
aged states Q' and Q? and piecewise constant gradients E)x, 0, are available in both cells. One can then recon-
struct the left and right states Q', O at the face as
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0'= 0"+ (x —xl)alx% 0 =0+ (x — x2)0,q. (15)

In practice the gradients will have to be limited to preserve monotonicity. We will address this in Section 5.4.
The reconstruction is schematically depicted in Fig. 1.
The Xu-Prendergast BGK scheme can be obtained by first solving the BGK equation (5) analytically:

1 4 —(1=s .
fx,u,t) = - / Jo(xX' u,s)e” = )ds—i—e’? (x — ut,u,0), (16)
0

where x’ =x — u(t — s). Eq. (16) represents a nonlinear average between the initial nonequilibrium state
fix,u,0) and an equilibrium state fy(x,u,t). The weight on the equilibrium state increases with ¢, which rein-
forces the interpretation of the BGK equation, as modeling the relaxation to a local equilibrium state on a
time scale .

3.1. Approximation of the equilibrium state

To approximate the equilibrium state under the integral sign in Eq. (16), a relaxation state Q is postulated
with a corresponding distribution £ at the face. As ¢ > 0, the characteristic line x, — ut falls to the left of the
interface for # > 0, and to its right for u <0. The relaxation state can thus be approximated along the char-
acteristic ut as

Sfo(—ut,u,t) = fo(0,u,0) — ut@ij_‘oH(u) - ut@fjo(l — H(u)) + 10,0, (17)

where H(x) is the Heaviside function with H(x) =1 for x > 0 and H(x) = 0 otherwise.
The equilibrium distribution function at the face is obtained by using the conservation constraint

[oraz= [ oniaz+ [ onaz (1)
u>0 u<0

where f! and £ represent Maxwellians evaluated with the left and right states, 0' and Q". The splitting of the
phase space is introduced so as to respect the gas-kinetic characteristic lines during reconstruction. It can thus
be viewed as gas-kinetic upwinding. The spatial derivatives to the left and right of a face are assumed to be
distinct, consistent with a piecewise linear reconstruction in each cell. The derivatives are obtained on either
side of the interface by simply differentiating Eq. (6) and using the chain rule, according to

0cfo = 0,/00:9.- (19)

For the macroscopic state Q corresponding to the relaxation function ) no gradients are available from the
initial reconstruction. One can use the approximation:

by 00
o —xll’
(20)
arq — Q2 - Q )
T lxo — x2|

Notice that the gradients have thus changed from the initial reconstruction to reflect the modeling of the col-
lision process leading to the relaxation state f,. Note also that f, is continuous at the face. A more detailed

Ty 0 T2

Left Cell IRight Cell

Fig. 1. Linear reconstruction.



G. May et al. | Journal of Computational Physics 220 (2007) 856-878 861

description of the computation of the derivatives is given in Appendix A. For notational convenience we de-
note the spatial reconstruction by

O.fo = OLfoH (u) + 3 o(1 — H(u)). (21)

We discuss the time derivative of £ in Section 3.3. This distribution function is used for the equilibrium state
fo in Eq. (16). Given the functional dependence in Eq. (17), the integral in Eq. (16) can be evaluated
analytically.

3.2. Approximation of the initial nonequilibrium state

The initial state must be approximated in a way consistent with the first-order Chapman—Enskog expan-
sion, Eq. (12). In the Xu-Prendergast BGK scheme the KFVS discretization is chosen, which uses the infor-
mation from either side of the face by introducing a kinetic splitting and evaluating the functional dependence
along the characteristic line on either side of the face as:

So—utd fy — {0, f3 + udf1}, u>0,
Sy —utd,fy — {0,/ +ud.fg}, u<O.

One of the solubility constraints of the Chapman—Enskog expansion requires that the higher order terms f;,
where i > 0, vanish upon integration over the velocity space against the collisional invariants. Hence the time
derivatives are obtained as

/¢>a, rdE = —/(]’)u@x rdzE, (23)

which is equivalent to enforcing the Euler equations. The spatial derivatives follow from the gradients of the
initial reconstruction by chain rule. Note that for the initial state, both the state and the derivative are discon-
tinuous. We introduce the notation:

fo = HH@W) + f;(1 = H(u)), (24)
Oufo = O fLH (u) + 0,11 (1 — H(u)). (25)

The same notation holds for the time derivatives obtained via Eq. (23).

f(—ut,u,0) = { (22)

3.3. The time derivative of the relaxation state

The time derivative in the relaxation state is finally computed using the following constraint:

/ t [ 0000~ 700 dza =0 (26)

This constraint seeks to mimic the condition that the right-hand side of the BGK equation vanish in integra-
tion against the collisional invariants, i.e. [ ¢(f — fy)dZ at all times, by ensuring that on average, over a time
step, the condition is satisfied for the full distribution function and the relaxation part fj at the face. Since all
the other terms are known, this expression can be solved for the time derivative, which we denote as 0,f;, to
give:

/ $Ood= = / b(oaudfo + asudofy + 03 {Bfo + ubrfo}) dE. (27)

The coefficients o;; can be obtained by straight forward time integration, which shall be omitted here. We have
made use of the fact that

/ $(Fo— fo)dZ =0 (28)

by construction. The time derivative is then computed using the procedure in Appendix A.
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3.4. The final form of the distribution function and some comments

Integrating the relaxation state in time, according to Eq. (16), we can write the distribution function as

L L

f(0,u,t) = (1 — e’r){fo - utm} + e*f{fo - utﬁ/x\o} - T(l - eir){g’ﬁ + um}
_ re’f{a/tﬁ + u@:ﬁ} +H{0fo + udofo}- o

One can casily identify the corresponding terms in Eq. (14). The first two terms approximate the equilibrium
distribution along the characteristic line uf using a nonlinear average between the continuous and discontin-
uous reconstruction techniques. The second and third term model the nonequilibrium distribution fi, which
gives rise to the viscous terms using a similar average. Finally the last term approximates the last term in
Eq. (14).

It is intriguing to note the nature of the approximation of the terms which form the viscous fluxes, the third
and fourth terms in Eq. (29). For moderate Reynolds numbers it is actually the third term which dominates,
not the one which comes from the direct approximation of the initial f; state, Eq. (22). The spatial derivative in
the this term comes from the approximation of the relaxation state along the characteristic line —ut, see Egs.
(17) and (21), and the time derivative is the term computed by Eq. (27). One can appreciate how the terms that
eventually form the viscous fluxes come together from all parts of the analytical solution of the BGK equation,
or the approximation thereto. In the derivation they were not meant to approximate an f; state, and the con-
straint [ ¢f; dZ = 0 will not be satisfied by this approximation.

3.5. The modified BGK scheme

We propose two modifications to the classical BGK scheme which address the construction of the initial
nonequilibrium terms (the fourth term in Eq. (29)), and the computation of the time derivative of the relax-
ation state, i.e. the term 0,f;.

In the BGK scheme the initial state is identical to the distribution function used in the KFVS method [5],
which is based on the collisionless Boltzmann equation 0,/ + u0,f = 0, and hence has no relaxation state. It has
sometimes been found that the KFVS scheme does not give very good results for viscous flow. The BGK
scheme’s superior modeling of viscous flow comes from the blending of the initial KFVS state and the con-
tinuous relaxation state. In fact, for most Reynolds number regimes the contribution of the KFVS part is neg-
ligible in the BGK scheme. This and cost considerations, which will be addressed below, provide the
motivation to rethink the computation of the nonequilibrium terms. We start by writing instead of Eq. (22):

f(—ut) = fo — dcfo — t{0ufo + udofo}- (30)

While the first two terms remain unchanged, the averaging a/x\o in the nonequilibrium terms is replaced with
the averaging 0./, and the new time derivative 0,f; is introduced, which is obtained as

[ #giaz = [ gudifiaz. (31)

We point out that the right-hand side of Eq. (31) is also part of the right-hand side in the computation of the
time derivative 9,fy, see Eq. (27), where it is blended with other terms. The old formulation computes a com-
plete f; state to the left and right of the face separately, which is then discretized by kinetic upwinding when
computing fluxes. In the new formulation the upwinding discretization takes place when the f] state at the face
is computed, by Eq. (31). This makes the viscous terms of the initial state more akin to the third term in Eq.
(29), which dominates except when 1 is of the order of ¢ or larger. This is the case only for very low Reynolds
numbers or whenever 7 is artificially increased for the purpose of adding dissipation, e.g. for shock capturing.
Validation of the new formulation should reflect this by including low Reynolds number computations and
transonic test cases. .

In the modified formulation the nonequilibrium terms now cancel by construction when computing 9,/
according to Eq. (26). One can write
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/ o0 dE = / bu(nBTy + 187) dE. (32)

Furthermore, the first term on the right-hand side has already been computed for Eq. (31), so that only the
two moments resulting from the averaging 0,1, need to be computed. At this point one can write the distri-
bution function as

L L

feu,t) = (1= e ) {fo— udfo} + e H{fo —utdfo} — 1(1 — e ) {dfo + udefo}
— e {0,fo + ud.fo} + t{af/o + ud.fo}. (33)

Although this is only an intermediate step we use this function for validation purposes in order to isolate the
effects of the proposed modifications. We shall refer to the scheme based on this distribution function as the
BGKg scheme, alluding to the use of the same averaging procedure for the nonequilibrium terms of the initial
distribution as for the equilibrium state, which is sometimes denoted as g.

The only terms in which 0,f; appears, are meant to approximate a nonequilibrium state, i.e. an f; state,
where the corresponding spatial expansion is given by 9,f. Any f; state should satisfy [ ¢f;d= = 0. Hence
it is not only computationally less expensive, but also appears physically reasonable to use this constraint,
which means using Eq. (31), and hence 0,fy = 0,fy. We can thus further rewrite the distribution function as

fleu,t) = (1= e ) {fo —udefo} + e {fo — utdefo} — {00 + udefo} + t{ufo + udefo}- (34)
This formulation will be denoted BGKgg, to reflect the fact that the overbar averaging, Eq. (31), is now used
for both the viscous terms, which collapse into one. .

Eq. (26), which was originally used to compute 0,fp, was meant to mimic the condition that
Jo(f — fo)dE =0, i.e. that the right-hand side of the BGK equation vanish upon integration against ¢. How-
ever, at the level of the partial differential equation, this constraint actually means that the current time-depen-
dent equilibrium state f; is the only part which survives an integration against ¢, and all other parts of f
vanish. In the new formulation, it has been ensured that all approximated f; states vanish individually. The
only terms which survive integration against ¢ are the first two terms in Eq. (34), which are indeed the approx-
imation to the most current f; state, including the equilibrium portion of the initial state. In the original for-
mulation only the relaxation state f, has been considered the “current” f; state.

Incidentally, all formulations are conservative in the usual sense, which is ensured by using a conservative
formulation and discretization. More precisely, for any domain €, which is subdivided into discrete control
volumes the condition fg dQ/dtdQ = faQF -doQ holds, irrespective of which way to compute the f; states
or the term 0,f, is chosen.

To appreciate the reduction in computational cost, consider Table 1. Most of the computational effort lies
in computing the moments of terms involving spatial or temporal expansions, for example the integral on the
right-hand side in Eq. (31), where two such moments have to be computed, one for each half of the velocity
space. We have included here the cost of a full three-dimensional reconstruction, which has not been discussed
so far. The one-dimensional formulation outlined here can be used for multidimensional computations as well,
although a small error in the viscous terms is incurred. We discuss the multidimensional extension below, and
point out how the additional overhead can be avoided without producing any error. The costs of the BGKg
and BGKgg schemes thus remain the ones given in Table 1. The simplified formulation thus reduces the com-
putational effort significantly.

Table 1
The number of moments coming from terms involving spatial and temporal expansions, which have to be taken for one flux computation
for the standard BGK scheme and the two modified versions, BGKg and BGKgg

Moments for BGK3D BGK BGKg BGKgg
afo 12 6 2 0
Nonequilibrium terms (initial state) 6 2 2 2
Fluxes 13 7 6 5
Additional terms for 3d 4 - - -
Total 35 15 10 7
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3.6. Analysis of the multidimensional formulation

The schemes outlined above are applicable to higher dimensions, using Eq. (10) to compute normal fluxes
for a finite-volume scheme, provided that at each face the local coordinate x is aligned with the face normal
(which suggests the use of a locally rotated coordinate system). However, a slight error in viscous terms is
incurred. While the heat flux vector can be accurately represented by normal gradients alone, for the viscous
terms in the momentum equation both normal and tangential derivatives are present even in the normal com-
ponent of the viscous flux. One might consider a more elaborate multidimensional formulation, such as the
one proposed recently by Xu et al. [10]. For simplicity we consider only the two-dimensional case. The exten-
sion to three dimensions is straight forward. In rotated coordinates with normal and tangential directions x
and y, and corresponding macroscopic velocities U and V, the rate-of-strain tensor is given by

(260U + A(0.U +9,V) w(©.V +0,U) (35)
B p(@.V +23,U) 2ud,V + Q.U +0,V) )

In the rotated frame the face normal is simply n = (1,0)"
nents in the first column of the rate-of-strain tensor
<2yaxU + 2(0,U + 6,V))

u(©.V +0,0)

. The viscous fluxes thus depend only on the compo-

Fvis,mom =0-h= (36)
We point out here that the second coefficient of viscosity is fixed at 4 = —2/5u by the Chapman-Enskog
expansion of the BGK equation. This deviates from the value —2/3u, which is usually used, but is correct only
for monoatomic gases. In practice this difference is of minor importance. The corresponding first nonequilib-
rium term in the Chapman—Enskog expansion of the gas-distribution function is given by

tfi = t{0ufo + udifo + v, fo}- (37)

In the continuous limit, the gas-kinetic formulation is entirely equivalent to the macroscopic one, so that

‘E/M(Z)f]dgzo‘-ﬂ (38)

holds exactly. If the tangential derivative v0,f; is omitted we have

20,U + 70,U
r/u(u){a,f(ﬁ—u@x 0}d5:< HOL + 2 > (39)
v ,uaxV

By comparing to Eq. (36), it is obvious that for the quasi-1D expansion even in the continuous limit the full
rate-of-strain tensor is not recovered, and the viscous flux at a given face depends on the local rotation. It is
important to note that this holds for any type of mesh. In [10] it was stressed that a multidimensional recon-
struction has to be considered for unstructured meshes. However, even for Cartesian meshes a quasi-1D
reconstruction does not reproduce the exact rate-of-strain tensor in the continuous limit. It should be pointed
out, that unlike conventional schemes, where the difference between Egs. (39) and (36) is computationally
insignificant, the BGK model becomes almost prohibitively expensive, certainly in the three-dimensional case,
if the gas-kinetic reconstruction is carried out in all dimensions, see Table 1.

For inviscid flow, a quasi-1D formulation should certainly suffice, since the difficulties involve only the vis-
cous terms. For viscous flow in higher dimensions the difference between the multidimensional reconstruction
and the quasi-1D reconstruction is small for a wide class of problems, even on highly stretched unstructured
meshes. Accordingly the use of a three-dimensional gas-kinetic reconstruction seems excessive. We propose
instead to augment the normal reconstruction by a simple central average of the tangential components of
the rate-of strain tensor. The necessary gradients are readily available from the reconstruction, and the stencil
for the viscous discretization remains unchanged.

A similar rationale has been used for conventional viscous discretization as well. It is well known that a
simple central averaging of the gradients for evaluation of the rate-of-strain tensor leads to odd—even decou-
pling, and possibly instability. For cell-vertex schemes a discretization technique, which replaces the normal
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Fig. 2. Schematic illustration of the correction of the normal gradient for stretched meshes in two dimensions. Left: The standard BGK
scheme uses Eq. (20). Middle: The modified schemes extrapolate to a projection onto the face normal direction first. Right: Approximate
the normal gradient using the new state and the reconstructed state at the face.

component of the central average with a directional difference approximation, has been proposed and used
successfully [15]. This correction provides an effective recoupling of the discretization stencil, which is given
here by the gas-kinetic normal expansion. Very few additional floating point operations are needed to add
the tangential gradients.

For the relaxation state Q the classical BGK scheme suggests the computation of the normal gradient by
using a difference approximation between the relaxation state and the cell-averaged states, see Eq. (20). This
assumes that the face normal is aligned with the direction connecting face centroid and cell centroid, which is
true only for Cartesian meshes. For all other meshes the expansion suggested by Eq. (20), gives inconsistent
values. This is a serious deficiency of the BGK scheme, since according to Eq. (29) the spatial gradients of the
relaxation state are in fact the dominant contribution to the physical viscous terms for most flow regimes. We
demonstrate below that this inconsistent expansion can have disastrous effects for stretched unstructured
meshes and is in fact of far greater importance than including tangential derivatives. It seems most fitting
to remove this problem by extrapolating the cell-averaged values to correspond to a point on the line normal
to the face and use the difference between the new state and the relaxation state to compute the gradient. This
approach is schematically depicted in Fig. 2. We emphasize that this correction is needed regardless of whether
the quasi-1D or a multidimensional formulation is chosen.

4. Transport coefficients

By setting the collision time according to Eq. (8) viscous fluxes with the correct coefficient of viscosity can
be computed directly by integrating the distribution function obtained from the BGK equation. However, for
the Chapman—Enskog expansion of the BGK equation, the Prandtl number is then fixed at one, so that the
heat conduction coefficient will take an incorrect value.

For accurate heat transfer prediction a correction is needed. Chae et al. [11] and Xu [8] suggested modifying
the energy flux as

1
FEeW — FE + (E _ 1>Q7 (40)

where the heat flux

— —

q:%/(U—ﬁ)-(U—ﬁ)de (41)

needs to be approximated in some suitable fashion.

In this paper we propose a different method, which corrects the heat flux at the level of the partial differ-
ential equations instead. The spatial derivative of the Maxwellian can be obtained by straight forward differ-
entiation of Eq. (6):



866 G. May et al. | Journal of Computational Physics 220 (2007) 856-878

ax](‘O _ Py

30,7 N 1
fo p 2 T 2RT?
For simplicity we restrict the following analysis to one dimension. The principle, however, applies to higher
dimensions as well.

We define the following modified gradient of the Maxwellian

ax,fO o Px 3 axT 1

— = +—
fo p 2P T  2RT*Pr

where the temperature gradient is scaled by the Prandtl number. We will show in the following that this mod-
ified gradient in fact leads to a first-order Chapman-Enskog term with the correct Prandtl number.
We have already pointed out that enforcing the constraint

/ $(0fo + udyfo)dE =0 (44)

(u— U3, T+ 1% (u— U),U. (42)

(u— U3, T + RLT (u—U)dU, (43)

is equivalent to enforcing the Euler equations, or put differently, computing the time derivatives from the
right-hand side of the Euler equations. A straight forward calculation shows that substituting the modified
Maxwellian gradient leads, upon taking moments, to the modified Euler equations:

0p = 0:(pU),

RO, T
pOU = —pUBU — P 1 3, pRT, (45)
3 3 pU

Substituting these modified gradients in the first-order Chapman—Enskog term gives

B 5 u—U?|108T 2 s
T(azfo-l-uaxfo)——Tfo(lz(u—U)—W ?F_W(M_U) o.U |. (46)
Here R is the specific gas constant. A similar derivation in three dimensions leads to
- PU 1 q; 2 C2
T(a[f0+uaxf0) ‘L'f()(p 2RTC[C‘j +pTC,{1 75 SRT s (47)

where ¢; = u; — U;, Pjy = —u(Ou; + Ou; — 2/30,0,ux), and q; = — %@T. Since the heat flux is now proportional
to the coefficient of heat conduction k = pc,/Pr one obtains the correct Navier-Stokes terms upon taking the
appropriate moments.

As outlined in Appendix A, in practical computations, the spatial derivatives are computed using the

relation

Jo+x0.fo = fo(1 + ax), (48)
where
a:ao—i—alu—i—azv—l—agw—i—%(uz+U2+w2). (49)

Xu gives a reconstruction for two-dimensional flows in [8]. The reconstruction for three dimensions is rather
similar. After some algebra (see Appendix A) one can see that the coefficients are given by:

ay = —0,4, (50)

az = 2J0.W — 2Way, (51)

ay; = 2)»6xV — 2Va4, (52)

ay = ZJ@VU - 2(]6147 (53)
)

P ia4 — (U +V? + W)ay. (54)

ap = —2Ua1 — 2Va2 — 2Wa’; +
p 22
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The computation is performed in an efficient recursive fashion, reusing the already computed coefficients. The
scaling of the temperature gradient with the inverse Prandtl number can be set by scaling the coefficient ay,
which is related to the temperature gradient via

0, = 0, (L> __lar (55)

2RT 2R T

Here the gas constant is assumed to be constant, although the method can be used for non-constant R as well.
It is sufficient to set @y = a4/Pr, and it can be appreciated how the scaling affects the reconstruction through
the recursion. Thus, only one additional floating point operation is needed for each (spatial) slope reconstruc-
tion. It also appears more straightforward to set the right Prandtl number when constructing the nonequilib-
rium terms, rather than computing the energy flux at the wrong Prandtl number and substituting the correct
heat flux afterwards.

5. Algorithmic details
5.1. Practical implementation of the flux computation

If one uses the method of lines to separate the spatial discretization from the time integration, Eq. (9) may
be considered as a starting point for the practical implementation of the finite-volume BGK scheme. The key
step, which is at the same time the only place where the method differs from a conventional finite-volume
scheme, is the flux evaluation, which is given by Eq. (10). The functional form of the time-dependent distri-
bution function is either of Egs. (29), (33), or (34). In practical implementations only moments of the distri-
bution function are needed, see Eq. (10), which can be computed by exact integration. Note that, if the spatial
and temporal gradients of the reconstructed distribution function are computed as outlined in Appendix A, all
moments that need to be computed can be expressed as

/u/v”’w”fo d= (56)
I

for some nonnegative integer numbers /, m, n, and [ = IxRxR. Depending on which integral is computed
we have either / = R, 7 = R*, or I = R, where limits corresponding to the positive and negative real axis
result from the kinetic upwinding on the normal phase-space velocity. These types of integrals can be precom-
puted before each flux computation using efficient recursion formulas [8], and their contributions can then be
simply added to evaluate Eq. (10), which is used in Eq. (9).

5.2. The multigrid formulation

For large-scale computations of steady flow multigrid techniques are almost indispensable. A nonlinear
multigrid method for nonlinear equations can be outlined as follows. Consider the general nonlinear PDE

L) = 7. (57)

A numerical estimate of the solution, v, say, will not satisfy this equation exactly. Assume a correction dv;, can
be found such that

gh(vh + 51)},) = .O/‘;h.
Then, after linearization,
thél)h + Rh = 07

where R;, = L,(v;,) — Fj, is the residual and A, is the Jacobian of the nonlinear operator L;. On the coarse grid
the above equation can be replaced by

%Qh&izh +[gth = 0, (58)
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where /%, represents the aggregation or restriction operator. To avoid using the Jacobian explicitly add
Lon(van) — Fop — Ry =0

to Eq. (58) to get
Lon(van + Svay) — F oy + 15,Ry — Ry, = 0. (59)

This is formally identical to the original equation, except for an additional source term involving the residuals
on the coarse and fine mesh. The solution can thus be advanced on the coarse mesh using the same routines as
on the fine mesh. Let vy, + dvy, = v3,. After v3, has been computed on the coarse grid the corrected solution on
the fine grid can be written

v S Yot
v = v+ 1 (v3, — va),

where 73" is an interpolation operator.

We combine this multigrid strategy with Runge-Kutta time stepping, as proposed by Jameson [16], which
yields a very computationally efficient framework. In principle the same numerical methods that are used on
the finest mesh in a multigrid sequence can be used on the coarser meshes as well. However, the numerical
schemes used on the coarse meshes do not affect the converged solution, but only the rate of convergence.
It has been found, in particular for irregular unstructured meshes, that a more diffusive flux computation
on coarse meshes has advantages. In fact, it often pays to smooth the residual correction in Eq. (59) before
adding it to the next finer mesh. Keeping these constraints in mind, it seems unreasonable to employ the full
gas-kinetic formulation on coarse meshes. Instead we have chosen a simple conventional method for the con-
vective fluxes, using central averages with scalar diffusion according to

FRiemann = %(FL +FR) - O‘(qR - qL)~ (60)

Here F- and FR are the projected inviscid fluxes evaluated with cell-averaged values from the left and right
cells, ¢ are the conservative variables, and o is a diffusion coefficient proportional to the spectral radius of
the flux Jacobian. A simple central discretization may used for the viscous terms.

5.3. Adaptive diffusion

For viscous flow the collision time is proportional to the dynamical viscosity, according to Eq. (8), i.e.
7= u/p. For inviscid flow one can set a lower value corresponding to numerical diffusion, t = Az, where
in practice f/; < 1, to provide a small amount of background diffusion.

The BGK scheme generates dissipation by virtue of using a discontinuous reconstruction. It has been com-
mon practice, however, to augment the collision time by a pressure-dependent term, designed to make the
physical viscosity proportional to the mesh width, whenever shocks are present:

p-—pt

pL _|_pR
where f is given by Eq. (8) or by it = 5, Atp for viscous and inviscid flow, respectively (the variables can be
evaluated with the relaxation state at the face). The rationale behind the additional term is that the numerical
viscosity should scale as the characteristic mesh length in underresolved regions. Eq. (61) indeed makes the
physical viscosity proportional to this characteristic length (provided the time step is proportional to the spec-
tral radius of the flux Jacobian). This has two main effects at shock locations: firstly the physical viscous terms
are proportional to the increased coefficient of viscosity; secondly the discontinuous reconstruction is more
heavily weighted.

If the additional increase of the physical viscosity is necessary or sufficient for adequate shock capturing is
not at all obvious. For some transonic flow cases, in particular in three dimensions, it was not used in our
implementations, while for most two-dimensional computations we generally found it necessary to augment
the inherent dissipation generated by the BGK scheme by increasing 7. This simply suggests that the best treat-
ment of dissipation is still an open problem for this class of scheme.

T=[/p+ B, Az, (61)
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5.4. Limiting

To promote monotonicity the gradient-based data reconstruction has to be limited using a limiter function
¢:

q(x) = O, + d(q)Vq - (x — x;). (62)
For unstructured meshes the limiter due to Venkatakrishnan [17] has proved very successful, and has been
used for this work. For one-dimensional results and results on structured meshes, Van Leer’s limiter [18]
has been used.

The nature of the gas-kinetic reconstruction warrants a more careful look at the limited reconstruction. In
the standard formulation a/l gradients in the construction of the distribution functions are limited. This, how-
ever, means that the nonequilibrium terms, which give rise to viscous terms, will in fact not be evaluated with
the correct gradients. This sets the gas-kinetic scheme apart from conventional approaches where usually only
the reconstruction for the convective terms is limited, whereas the viscous terms are evaluated with exact gra-
dients. For the BGKgg scheme an option to not use data limiting for the nonequilibrium terms can be easily
included. The moments for the expansion 0,f, have to be computed twice in this case, once with and once
without limiting, which increases the total number of moments from seven to eight, see Table 1, which is still
significantly cheaper than the standard BGK scheme. Due to the intricate nature of the gas-kinetic reconstruc-
tion in the standard BGK scheme, in particular the expansion 0,fy, it is extremely cumbersome and expensive
to provide for such an option. For cases in which viscous phenomena are resolved properly, the BGK scheme
thus may suffer from degraded accuracy. We provide examples showing how the limiting can affect the solu-
tion for the BGK scheme in Section 7.

6. Numerical validation
6.1. Validation of the Prandtl number correction

Several test cases have been computed to validate the Prandtl number correction. Fig. 3 shows the velocity
and heat flux distribution across a resolved normal shock for two different Prandtl numbers computed with
the BGKg scheme. The upstream Mach number is M = 10. We compare the results with the analytical solu-
tion of the one-dimensional Navier—Stokes equations [8]. Excellent agreement can be observed. We note that
the Navier—Stokes equations are not well suited for such high degrees of nonequilibrium, so the results shown
here cannot be expected to represent accurate physics. However, the aim of these computations is merely to
demonstrate that the gas-kinetic scheme solves the Navier-Stokes equations at the specified Prandtl number.

Shock Structure Computation, M =10.0 Shock Structure Computation, M =10.0
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Fig. 3. Velocity (left) and heat flux (right) across a strong normal shock (M = 10). Note that only every other point has been plotted.
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Fig. 4. Dimensionless temperature for compressible boundary layer at M = 0.6, Pr =0.72. Standard BGK scheme (left) and BGKg
scheme, Eq. (33).

Fig. 4 shows the similarity solution for a zero-pressure-gradient compressible boundary layer on a flat plate
at M = 0.6 and Pr=0.72 in terms of the dimensionless temperature T/T,, where Ty is the freestream temper-
ature. The profiles are plotted in similarity coordinates and compared to the exact similarity solution at several
stations along the plate. We observe very good agreement for both the standard BGK scheme and the BGKg
scheme, according to Eq. (33), which are both shown in the figure. For this well-resolved case the differences
between the schemes are negligible. This is also true, although not shown, for the BGKgg scheme.

6.2. Isentropic nozzle flow: a convergence study

As a preliminary test case, and for the purpose of carrying out a convergence study, consider isentropic,
quasi one-dimensional nozzle flow. For this case the governing equations can be written

0,0 +0.F+5=0, (63)
where
U U
ﬂ g a1
O=|pU |, F=| pU+p |, S=77- pU (64)
E U(E +p) U(E + p)

and the dependent variables are defined as in Section 2. The cross-section of the nozzle, A4, is defined on the
interval [0, x,,], where we have taken x,, = 10, and

(x) = { din + f(x)2(3 = 28(x))(di — din), x <xi,
di+n(x)°(3 = 20(0)) (dow — dV), X = x,

where &(x) = x/x; and n(x) = (x — x¢)/(Xout — X¢). The coordinate x; = 3.75 is the location of the nozzle throat,
while the nozzle diameters at the inlet, outlet and throat are given by d;, =1, dy, = 1.25, and d;, = 0.875,
respectively.

We choose a nozzle exit Mach number of M = 0.3, which leads to a maximum Mach number in the nozzle
throat of M = 0.46 for the chosen nozzle gecometry. At the inflow we extrapolate the outgoing Riemann invari-
ant and fix the total enthalpy and entropy function s = p’/p, while at the outflow the entropy and total
enthalpy are extrapolated and the pressure is fixed. The exact solution for the Mach number can be obtained
from the well known area-Mach number relation for isentropic nozzle flow, which can be found in many stan-
dard text books, e.g. [19]. Table 2 displays the maximum error in the Mach number for the BGKgg scheme in
mesh refinement, where we have denoted the number of mesh cells with N. We compare the data to a conven-
tional finite volume scheme, which uses a central average for the fluxes, augmented by a CUSP construction of
artificial diffusion [20]. It can be seen that the BGKgg scheme reaches second order of accuracy, once the

(65)
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Table 2
Comparison of the maximum error in the Mach number between the BGKgg scheme and the CUSP scheme for isentropic nozzle flow
N BGKgg CUSP
L (error) Order L (error) Order
20 5.920739%¢ — 04 7.531804e — 04
30 3.093076e — 04 1.601359 4.037851e— 04 1.537548
40 1.740776e — 04 1.998161 2.375062e — 04 1.844706
50 1.044453¢ — 04 2.289281 1.513558¢ — 04 2.019152
70 5.049497e — 05 2.160028 8.068882e — 05 1.869495
100 2.409334e —05 2.074545 3.744039¢ — 05 2.152801
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Fig. 5. Comparison of the maximum error in the Mach number between the BGK gg scheme and the CUSP scheme for isentropic nozzle
flow.

asymptotic region is reached. A graphical comparison between the two schemes is shown in Fig. 5, where the
error is plotted on a log scale against the number of cells. Here it is clearly visible that both schemes converge
at approximately the same rate, while the error levels for the BGKgg scheme are somewhat lower, compared
to the conventional CUSP scheme.

7. Two-dimensional results

In this section we focus on basic validation of the modified versions of the BGK scheme for inviscid and
viscous flow. While multigrid was implemented and used, we defer the discussion related to multigrid to Sec-
tion 8, where we present three-dimensional results on unstructured meshes.

The computations in this section use triangular meshes in cell-centered discretization, i.e. the primary mesh
elements are used as control volumes. On numerous occasions we compare the BGK scheme to results
obtained with a conventional method, for which we have chosen a finite-volume scheme using a central aver-
age with CUSP construction of artificial dissipation [20] for the convective terms, and a central discretization
for the viscous terms. More precisely, in the conventional implementation the viscous terms are computed by
first transferring the relevant variables from the cell centroids to the nodes, computing primitive gradients
there using a least-squares method, and then averaging the gradients on edges (i.e. the faces of the triangular
control volumes) to compute the rate-of-strain tensor. The reconstruction is identical for both schemes and
uses a least-squares estimate of the gradient along with Venkatakrishnan’s limiter. In fact, aside from the flux
computation routines, there is no difference between the code that employs the conventional method and the
gas-kinetic version.

We first present two-dimensional results for inviscid transonic flow. Fig. 6 shows the computed pressure
contours for a NACAO0O012 profile in transonic flow at M = 0.8 and an incidence of « = 1.25°. The CUSP solu-
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Fig. 6. Inviscid transonic flow around the NACAO0012 airfoil at M = 0.8, o = 1.25°. Contour plots of pressure for the CUSP scheme (left)
and the BGKgg scheme (middle). The mesh is shown on the right.

tion is compared to the BGKgg scheme (incidentally, for inviscid flow the initial nonequilibrium state can be
omitted, and hence the BGK and BGKg schemes are identical). The shock capturing capabilities are virtually
identical for all schemes. The computation was carried out on a mesh with 10,240 triangles. Fig. 7 compares
the pressure distributions along the airfoil for the same test case. We have used f; = 1072 and f, = 1 in Eq.
(61).

For two-dimensional viscous validation we first demonstrate the necessity of using a consistent approxima-
tion for the normal gradient of the relaxation state f, i.e. applying the correction of the normal derivative
described in Section 3.6. Fig. 8 shows the streamwise velocity of a zero-pressure gradient boundary layer at
Re =2000, M = 0.2 computed on a stretched triangular mesh using the standard BGK scheme. The figures
overplot the solution sampled at every 10% length of the plate in similarity coordinates. It can be seen that
using a consistent approximation of the gradient of the relaxation state is of far greater importance than using
the multidimensional reconstruction. Computing viscous fluxes with incorrect projected gradients is more det-
rimental than omitting tangential expansions, and the correction must be carried out for both one-dimensional
and multidimensional reconstruction. The same is true for the BGKg and BGKgg schemes, which use the
same gradients to approximate the viscous terms.

For two-dimensional viscous validation of the modified scheme we focus on low Reynolds number compu-
tations to amplify the contribution of the viscous terms, along with transonic flow conditions, to lend some
importance to the generation of artificial dissipation as well. Some of the test cases we present have also been
considered in [21], and have been previously used as benchmarks for viscous flow [22]. Fig. 9 shows the dimen-
sionless pressure distribution p/p.., where p is the freestream pressure, for the NACA0012 profile at M = 0.8
and o = 10° for Reynolds numbers Re = 73 and Re = 500. One can see that although the contribution of the
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Fig. 7. Inviscid transonic flow around the NACA0012 airfoil at M = 0.8, o = 1.25°. Comparison of the dimensionless pressure p/p.. along
the airfoil.
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Fig. 8. Streamwise velocity for zero-pressure-gradient boundary layer on a stretched triangular mesh. Left: Multidimensional
reconstruction and Eq. (20) without correction of the cell-averaged state. Middle: Multidimensional reconstruction with gradient
correction. Right: Quasi-1D reconstruction with gradient correction.
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Fig. 9. Left: NACAO0O012 profile at Re =73, M = 0.8, and o = 10°. Comparison of quasi-1D and 2D reconstruction, and quasi-1D using
Eq. (20) without correction of the cell-averaged state. Right: NACAO0012 profile at Re = 500, M = 0.8, and o = 10°. Comparison of quasi-
1D and 2D reconstruction.

viscous terms is very significant for these test cases the difference between the quasi-1D and 2D reconstruction
is small. Tangential gradients have been omitted. We observe that using the correct normal expansion for 0,/
is of greater importance than including tangential components.

Fig. 10 demonstrates the influence of limiters on the solution for Re = 500. A contour plot of the Mach
number distribution is shown, computed with the BGKg scheme, along with a comparison of the dimension-
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Fig. 10. NACAO0012 profile at Re = 500, M = 0.8, and o = 10°. Mach number contours computed with the modified BGK scheme without
limiters (left), and comparison of the pressure distribution along the airfoil for the CUSP scheme with central viscous discretization and
the BGKg scheme with and without limiter (right).
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Fig. 11. NACAO0012 profile at Re = 500, M = 0.8, and o = 10°. Separation on the suction side. The BGKg scheme (left) and the CUSP
scheme with central viscous discretization (right).
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Fig. 12. NACAO0012 profile at Re = 1500, M = 0.8, and « = 1.25°. Left: Magnified view of the mesh inside the boundary layer. Middle:
Pressure distribution along the profile for various reconstruction methods. Right: Magnified view of the pressure distribution on the
suction side to amplify the difference between the quasi-1d and 2d reconstruction techniques.

less pressure distribution between the CUSP scheme (with central discretization of viscous terms), and BGKg
scheme with and without limiters. The influence of data limiting on the BGK scheme has already been pointed
out by Xu [8], and can be clearly seen in the pressure distribution (although not shown the same behavior is
observed for the BGKgg scheme). We point out here that the CUSP solution was computed using limiters as
well, but due to the fact that the viscous terms use unlimited gradients, the solution is not greatly affected. As
outlined in Section 5.4, an advantage of the BGKgg scheme is that at least the option of not using data lim-
iting for the nonequilibrium terms can be easily included at only slightly increased computational cost.

Fig. 11 shows a close-up view of a large separation zone, which is present for these flow conditions on the
suction side of the airfoil. The size and shape of the recirculation region is very similar for the all schemes. We
show exemplarily the CUSP and BGKg solutions.

Fig. 12 shows the solution for the NACAO0012 profile at M = 0.8, Re = 1500, and incidence o = 1.25°. To
resolve the boundary layer, the mesh becomes increasingly stretched. However, the difference between the
quasi-1d and the 2d reconstruction methods remains small. In the magnified view of the pressure distribution
on the suction side it can be seen that the 2d construction outlined in Section 3.6 and the full gas-kinetic 2d
reconstruction yield virtually identical results, for both the BGKg and the BGKgg scheme.

8. Three-dimensional results

We focus mainly on the multigrid implementation on unstructured meshes in this section. The BGK
method has been embedded into the Flo3xx computational aerodynamics architecture, documented in a pre-
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vious publication [23], which solves the three-dimensional Euler and Navier—Stokes equations on arbitrary
meshes in finite-volume formulation.

The Onera M6 test case at M = 0.84, o = 3.06° has been chosen to validate three-dimensional inviscid tran-
sonic flow using the BGKg method (which is identical to the standard BGK scheme for inviscid flow) and the
BGKgg scheme with multigrid. Fig. 13 shows the convergence history of the lift and the density residual on a
tetrahedral mesh with 94,000 nodes. Also shown is a comparison of the convergence history for the lift coef-
ficient between the BGK(g) scheme and the CUSP scheme, which serves to show that the BGK scheme is cer-
tainly competitive with conventional schemes in terms of convergence to a steady state. We have used
B1=10"% and, in fact, f, =0 for these computations. This means that no artificial dissipation is added,
and we rely solely on the dissipation generated by the gas-kinetic upwinding. The shock capturing behavior
is excellent, as is shown in Fig. 14, where the pressure distribution in terms of the pressure coefficient is shown
for the wing section y/b = 0.2 taken from computations on tetrahedral meshes. Both the CUSP method and
the BGK schemes are shown and can be seen to give very similar results. Both show a good shock resolution.
In particular the complete absence of oscillatory behavior, especially for the BGK scheme should be noted.
The shock resolution on a mesh of moderate size, such as the 316,000 node mesh is excellent.

Fig. 15 shows the convergence history of a single-grid and a three-level multigrid solution for a computa-
tion of a Falcon Business Jet configuration in transonic inviscid flow, along with contour plots of the density.
The multigrid overhead has been taken into account in the work units used to compare the convergence. The
speedup due to multigrid is most dramatic in integrated quantities, such as the coefficient of lift, shown in
Fig. 15. We point out that solutions for the BGKg scheme and the BGKgg scheme are virtually identical.
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Fig. 13. Left and middle: Convergence history of the density residual and lift coefficient for the BGKg and BGKgg scheme. Right:
Comparison of the convergence history for the CUSP and BGK(g) scheme on a magnified scale. Tetrahedral mesh using a three-level
multigrid sequence. Coarse meshes use conventional first-order fluxes.
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Fig. 14. Pressure coefficient for the Onera M6 Wing at M = 0.84, o = 3.06 at wing section y/b = 0.2. Left: Comparison of the BGKg and
BGKgg scheme on 94,000 node mesh. Middle: BGKg scheme on different meshes (94,000 and 316,000 nodes). Right: BGKg and CUSP
scheme on the 316,000 node mesh.
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Fig. 15. Falcon Business Jet at M = 0.8 and o = 2°. Left: Convergence history of the coefficient of lift for single grid and multigrid
computations. Middle and right: Density contours.
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Fig. 16. Onera M6 Wing at Re =73, M = 0.8, and « = 3.06°. Left: Convergence history of density residual and coefficient of lift. Right:
Contours of pressure coefficient.

All schemes are stable at CFL = 10 with an explicit 5 Stage Runge-Kutta time stepping technique with resid-
ual averaging and local time stepping.

Basic viscous validation for a low Reynolds number is shown in Fig. 16, where the solution for the Onera
M6 Wing at M = 0.8, o = 3.06° and Re = 73 is shown. In terms of the Mach number and angle of attack this is
a standard test case, however computed at much lower Reynolds number to emphasize the contribution of the
viscous terms. Note that the convergence history has been plotted against work units, which introduces a fac-
tor of about 1.4 in increase of cost compared to single grid solutions, made up in equal parts by the compu-
tations on coarser meshes and the cost of performing one extra residual evaluation on the fine mesh for the
coarse mesh forcing function in Eq. (59). Note how the coefficient of lift is essentially converged when the
residual has been reduced by about three orders of magnitude. The mechanism of convergence acceleration
is an effective increase of the speed with which information is propagated in the flow field. Typically, solutions
in multigrid computations do not tend to creep, and the steady state is reached at much higher levels of resid-
uals compared to single grid computations.

9. Conclusion

Modifications to the standard BGK scheme have been proposed and examined. All schemes have been
shown to give good results overall. There is very little difference between the different flavors of the method
in terms of results, but enormous differences in CPU time. Large-scale computations in three dimensions
are made feasible by the modified formulations (along with multigrid), with the consequence that the other-
wise prohibitive cost of gas-kinetic computations is drastically reduced. The BGK gg method is the least com-
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putationally expensive of the tested schemes, and should therefore be preferred. In particular when compared
to the full three-dimensional BGK scheme, the savings in CPU time are dramatic.

Appendix A. Reconstruction

In this section we give explicit formulas for the reconstruction procedures needed for the spatial gradients
and time derivatives. Very similar formulas have been given by Xu for the two-dimensional case [8]. We
include the three-dimensional formulas merely for convenience. The spatial gradients of the Maxwellian dis-
tribution can be evaluated by direct differentiation. We write

Jo+x8:f0 = fo(1 + ax), (A1)
where

_190fo _d(In fp)

This leads to
M:E{lnp—i—%ln (g) —Mid—-0)- (@ - U)}

ox Ox
19p 50, 0k, =~ . = L - 00
—;a—x“rﬂ&—a—x(u—U)-(u—U)—Zl(u—U)-a, (A.3)

where the differentiation of the velocity vector is to be taken componentwise.
Since in practical implementations only moments of the distribution function are needed it pays to group
the expansion coefficients along with the collisional invariants, i.e. the elements of ¢:

a:ao+a1u+azv+a3w+%(u2+Uz+w2). (A4)

Suppose we are given the gradients of the conservative variables Q and the primitive variables as input. The
following recursive action can be used to compute the expansion coefficients from Eq. (A.3):

1
GXUi = ;(ainJrl - Uiale)’ i= 172737 (AS)
1 l — —
o = (- D{0.0s - 300U+ 72+ W) - 3000, (A6
, p A 22
o =0 (L) =200, - L op, A7
<2p> p O T O (A7)
4y = —0.4, (A.8)
as = Z/IGXW — ZWCM, (Ag)
ay; = ZiaxV — 2Va47 (AIO)
ay = Z/IGVU — 2Ua4, (All)
1 5 L
ap = —2Ua1 - 2Va2 - 2Wa3 +;6xQ1 —5(14 — (U . U)a4. (A12)

This routine can be used to compute the time derivatives as well. It can be appreciated that the time derivative
of the Maxwellian is given by Eq. (A.3) with the space derivatives replaced by time derivatives. Since all time
derivatives are computed by the conservation constraint

[ sograz = [ pudusiz (A13)

we can interpret the right-hand side as the macroscopic derivative which the derivative of the Maxwellian has
to reproduce:
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/ dud. fod= = 3,0. (A.14)

Eqgs. (A.5)—(A.12) can then be used with the time derivatives 6,@ to compute the equivalent of the set of coef-
ficients (A.4) for the time derivatives.
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